
Prototyping Workflow Automation
with Snap!

Xavier Pi

Snap!Con 2025

Popular Workflows Automation

• Popular workflow automation tools, such as
Make, n8n, Zapier, Microsoft Power Automate,
or SAP Build Process Automation, propose the
use of "low-code" graphical languages to
minimize the barrier to entry.

• Technically, they are based on flowcharts
assisted with tools that facilitate their use.

Make

n8n

Zapier

Microsoft Power Automate

SAP Build Process Automation

Algorithmic Foundations

Algorithmic Structures

Basic Common Elements

• Actions or tasks

• Events or triggers

• Decisions and loops

• Connectors

Connectors

Make Connectors

n8n Connectors

Zapier Connectors

Microsoft Power Automate Connectors

A Basic Connector Example

Two Approaches
• Pure Snap! Implementation

– No dependencies
– Architecturally and technically limited

• Snap! + External bridge agent support
– Depends on an external bridge agents that call existing

APIs (there are thousands of them).
– Architecturally unlimited and technically almost

unlimited

Pure Snap! Implementation

• Using Snap! “Web services access (https)” only
allows direct calls to some APIs, such as API-KEY-
based ones.

• Security issue: API key is visible in the code.

• Many APIs cannot be called directly from
browsers for security reasons.

External Bridge Agents
• Based on independent agent which uses existent

implemented APIs.
• Example:

– Flask Python process
– Can access to any API (Key based, token based, Oauth 2,

etc)
– Accessed from Snap! via HTTP or MQTT
– Access to Snap! via MQTT

External Bridge Agent Example

Pure Snap! vs External Bridge Agent

https://xavierpi.com/ia

https://xavierpi.com/ia

Experiences at Barcelona SIL 2025

Experiences at SIL 2025

Experiences at SIL 2025

Experiences at SIL 2025

Experiences at SIL 2025

Experiences at SIL 2025

Experiences at SIL 2025

Recap
• Block-based languages like Snap! are lingua franca for almost the

whole new generation; there is no need to create parallel discourses to
explain computational thinking (algorithmic thinking, decomposition,
abstraction, and pattern recognition).

• Undergraduate programmers can develop connectors based on
external bridge agents, easily using AI in most cases, on a cheap VPS or
cloud service.

• Snap! is architecturally complete (bidirectional sync and async agents
interactions with client-server and PubSub architectures) thanks to
“Web services access (https)” and “MQTT” libraries.

Thank you !

Xavier Pi
xpi@enginyers.net

mailto:xpi@enginyers.net

